CBCS SCHEME

USN

15MATDIP31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Additional Mathematics – I

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Find the real and imaginary parts of $\frac{2+i}{3-i}$ and express in the form of x + iy. (05 Marks)
 - b. Reduce $1 \cos \alpha + j \sin \alpha$ to the modulus amplitude form $[r(\cos \theta + i \sin \theta)]$ by finding r and θ . (06 Marks)
 - c. If $\vec{a} = 4i + 3j + k$ and $\vec{b} = 2i j + 2k$ find the unit vector perpendicular to both the vectors \vec{a} and \vec{b} . Hence show that $\sin \theta = \frac{\sqrt{185}}{3\sqrt{26}}$ where ' θ ' is angle between \vec{a} and \vec{b} . (05 Marks)

- Find the modulus and amplitude of $\frac{3+i}{1+i}$. (05 Marks)
 - Find 'a' such that the vectors 2i j + k, i + 2j 3k and 3i + aj + 5k are coplanar. (06 Marks)
 - $[\bar{\mathbf{b}} \times \bar{\mathbf{c}}, \bar{\mathbf{c}} \times \bar{\mathbf{a}}, \bar{\mathbf{a}} \times \bar{\mathbf{b}}] = [\bar{\mathbf{a}}, \bar{\mathbf{b}}, \bar{\mathbf{c}}]^2.$ Show that for any three vectors $\bar{a}, \bar{b}, \bar{c}$ (05 Marks)

- a. Find the n^{th} derivative of $\sin(5x)\cos(2x)$. b. If $y = a\cos(\log x) + b\sin(\log x)$ prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$. (05 Marks)
 - (06 Marks)
 - c. If $u = \sin^{-1} \frac{x+y}{\sqrt{x} \sqrt{y}}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$. (05 Marks)

- Expand $e^{\sin x}$ by Maclaurin's series upto the term containing x^4 . (05 Marks)
 - b. Give $u \sin\left(\frac{x}{y}\right)x = e^t$ $y = t^2$ find $\frac{du}{dt}$ as a function of t. (06 Marks)
 - c. If $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(r,\theta)}{\partial(x,y)}$. (05 Marks)

Module-3

- a. State reduction formula for $\int \sin^n x \, dx$ and evaluate $\int \sin^9 x \, dx$. (05 Marks)
 - b. Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^{\frac{1}{2}}}$ (06 Marks)
 - c. Evaluate: $\int_0^1 \int_0^2 x^2 yz \, dx \, dy \, dz.$ (05 Marks)

15MATDIP31

OR

6 a. Evaluate: $\int_{0}^{\pi} \sin^{4} x \cos^{6} x dx$. (05 Marks)

b. Evaluate : $\int_{0}^{5} \int_{0}^{x^2} y(x^2 + y^2) dx dy$. (06 Marks)

c. Evaluate : $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{3}y^{2}z^{3} dx dy dz$. (05 Marks)

Module-4

- 7 a. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where t is the time. Find the velocity and acceleration at time t = 1. (05 Marks)
 - b. Find the unit normal vector to the surface $xy^3z^2 = 4$ at the point (-1,-1,2). (06 Marks)
 - c. What is solenoid vector field? Demonstrate that vector F given by $\overline{F} = 3y^2z^3i + 8x^2\sin(z)j + (x+y)k \text{ is solenoidal.}$ (05 Marks)

OR

8 a. Find div F and Curl F if

$$\overline{F} = (3x^2 - 3yz)i + (3y^2 - 3xz)j + (3z^2 - 3xy)k.$$
 (05 Marks)

- b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- c. Show that the fluid motion $\overrightarrow{V} = (y+z)i + (z+x)j + (x+y)k$ is irrotational. (05 Marks)

<u> Module-5</u>

9 Find the solution of:

a.
$$(x^2 + 2e^x)dx + (\cos y - y^2)dy = 0$$
. (05 Marks)

b.
$$\frac{dy}{dx} = \frac{y_X}{1 + y_X}.$$
 (06 Marks)

c.
$$(x^2 - ay)dx + (y^2 - ax)dy = 0$$
. (05 Marks)

OR

10 a. Find the solution of:

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{x}^3}{\mathrm{y}^3}.$$
 (05 Marks)

b.
$$(x^2y^3 + \sin x)dx + (x^3y^2 + \cos y)dy = 0$$
. (06 Marks)

c.
$$\cos y \frac{dy}{dx} + \sin y = 1$$
. (06Marks)

* * * * *